SAturation-recovery and Variable-flip-Angle-based three-dimensional free-breathing cardiovascular magnetic resonance T 1 mapping at 3 T.
Rui GuoDongyue SiZhensen ChenErpeng DaiShuo ChenDaniel A HerzkaJianwen LuoHaiyan DingPublished in: NMR in biomedicine (2022)
The purpose of the current study was to develop and validate a three-dimensional (3D) free-breathing cardiac T 1 -mapping sequence using SAturation-recovery and Variable-flip-Angle (SAVA). SAVA sequentially acquires multiple electrocardiogram-triggered volumes using a multishot spoiled gradient-echo sequence. The first volume samples the equilibrium signal of the longitudinal magnetization, where a flip angle of 2° is used to reduce the time for the magnetization to return to equilibrium. The succeeding three volumes are saturation prepared with variable delays, and are acquired using a 15° flip angle to maintain the signal-to-noise ratio. A diaphragmatic navigator is used to compensate the respiratory motion. T 1 is calculated using a saturation-recovery model that accounts for the flip angle. We validated SAVA by simulations, phantom, and human subject experiments at 3 T. SAVA was compared with modified Look-Locker inversion recovery (MOLLI) and saturation-recovery single-shot acquisition (SASHA) in vivo. In phantoms, T 1 by SAVA had good agreement with the reference (R 2 = 0.99). In vivo 3D T 1 mapping by SAVA could achieve an imaging resolution of 1.25 × 1.25 × 8 mm 3 . Both global and septal T 1 values by SAVA (1347 ± 37 and 1332 ± 42 ms) were in between those by SASHA (1612 ± 63 and 1618 ± 51 ms) and MOLLI (1143 ± 59 and 1188 ± 65 ms). According to the standard deviation (SD) and coefficient of variation (CV), T 1 precision measured by SAVA (SD: 99 ± 14 and 60 ± 8 ms; CV: 7.4% ± 0.9% and 4.5% ± 0.6%) was comparable with MOLLI (SD: 99 ± 25 and 46 ± 12 ms; CV: 8.8% ± 2.5% and 3.9% ± 1.1%) and superior to SASHA (SD: 222 ± 89 and 132 ± 33 ms; CV: 13.8% ± 5.5% and 8.1% ± 2.0%). It was concluded that the proposed free-breathing SAVA sequence enables more efficient 3D whole-heart T 1 estimation with good accuracy and precision.