A machine learning approach for automated assessment of retinal vasculature in the oxygen induced retinopathy model.
Javier MazzaferriBruno LarrivéeBertan CakirPrzemyslaw SapiehaSantiago CostantinoPublished in: Scientific reports (2018)
Preclinical studies of vascular retinal diseases rely on the assessment of developmental dystrophies in the oxygen induced retinopathy rodent model. The quantification of vessel tufts and avascular regions is typically computed manually from flat mounted retinas imaged using fluorescent probes that highlight the vascular network. Such manual measurements are time-consuming and hampered by user variability and bias, thus a rapid and objective method is needed. Here, we introduce a machine learning approach to segment and characterize vascular tufts, delineate the whole vasculature network, and identify and analyze avascular regions. Our quantitative retinal vascular assessment (QuRVA) technique uses a simple machine learning method and morphological analysis to provide reliable computations of vascular density and pathological vascular tuft regions, devoid of user intervention within seconds. We demonstrate the high degree of error and variability of manual segmentations, and designed, coded, and implemented a set of algorithms to perform this task in a fully automated manner. We benchmark and validate the results of our analysis pipeline using the consensus of several manually curated segmentations using commonly used computer tools. The source code of our implementation is released under version 3 of the GNU General Public License ( https://www.mathworks.com/matlabcentral/fileexchange/65699-javimazzaf-qurva ).
Keyphrases
- machine learning
- deep learning
- artificial intelligence
- optical coherence tomography
- randomized controlled trial
- emergency department
- primary care
- magnetic resonance imaging
- mental health
- small molecule
- drug induced
- optic nerve
- stem cells
- bone marrow
- high resolution
- oxidative stress
- diabetic rats
- fluorescent probe
- network analysis
- cell therapy
- label free