Characterization and Comparative Analysis of Whole-Transcriptome Sequencing in High- and Low-Fecundity Chongming White Goat Ovaries during the Estrus Phase.
Yuexia LinLingwei SunJianjun DaiYuhua LvRongrong LiaoXiaohui ShenJun GaoPublished in: Animals : an open access journal from MDPI (2024)
Reproductive performance is one of the most important economic traits in the goat industry. Increasing the number of goats is an effective measure to improve production efficiency and reduce production costs. Ovaries are important reproductive organs in female mammals that directly affect the estrous cycle and reproductive abilities. Understanding the complex transcription network of non-coding RNAs (lncRNAs, circRNAs, and miRNAs) and messenger RNA (mRNA) could lead to significant insights into the ovarian regulation of the reproductive processes of animals. However, the whole-transcriptome analysis of the non-coding RNAs and mRNA of the ovaries in Chongming white goats between high-fecundity (HP) and low-fecundity (LP) groups is limited. In this study, a whole-transcriptome sequencing approach was used to identify lncRNA, circRNA, miRNA, and mRNA expression in the ovaries of Chongming white goats during the estrus phase using RNA-Seq technology. More than 20,000 messenger RNAs (mRNAs), 10,000 long non-coding RNAs (lncRNAs), 3500 circular RNAs (circRNAs), and 1000 micro RNAs (miRNAs) were identified. A total of 1024 differential transcripts (724 mRNAs, 112 lncRNAs, 178 circRNAs, and 10 miRNAs) existing between the HP and the LP groups were revealed through a bioinformatics analysis. They were enriched in the prolactin signaling pathway, the Jak-STAT signaling pathway, and the GnRH signaling pathway, as well as various metabolic pathways. Differentially expressed mRNAs (such as LYPD6 , VEGFA , NOS3 , TNXB , and EPHA2 ) and miRNAs (such as miR-10a-5p ) play key roles in the regulation of goat ovaries during the estrus phase. The enrichment of pathways related to reproduction, such as the Hippo, Hedgehog, PI3K-AKT, and MAPK signaling pathways, suggests that they might be involved in the prolificacy of goat ovaries. Overall, we identified several gene modules associated with goat fecundity and provided a basis for a molecular mechanism in the ovaries of Chongming white goats.
Keyphrases