Login / Signup

Gibbs free energy of protein-protein interactions correlates with ATP production in cancer cells.

Stefan M GolasAmber N NguyenEdward A RietmanJack Adam Tuszynski
Published in: Journal of biological physics (2019)
In this paper, we analyze several cancer cell types from two seemingly independent angles: (a) the over-expression of various proteins participating in protein-protein interaction networks and (b) a metabolic shift from oxidative phosphorylation to glycolysis. We use large data sets to obtain a thermodynamic measure of the protein-protein interaction network, namely the associated Gibbs free energy. We find a strong inverse correlation between the percentage of energy production via oxidative phosphorylation and the Gibbs free energy of the protein networks. The latter is a measure of functional dysregulation within the cell. Our findings corroborate earlier indications that signaling pathway upregulation in cancer cells is linked to the metabolic shift known as the Warburg effect; hence, these two seemingly independent characteristics of cancer phenotype may be interconnected.
Keyphrases