Phenotype stability and dynamics of transposable elements in a strain of the microalga Tisochrysis lutea with improved lipid traits.
Jérémy BerthelierBruno Saint-JeanNathalie CasseGaël BougaranGrégory CarrierPublished in: PloS one (2023)
Microalgal domestication is an expanding research field that aims to multiply and accelerate the potential of microalgae for various biotechnological purposes. We investigated the stability of improved lipid traits and genetic changes of a domesticated strain of the haptophyte Tisochrysis lutea, TisoS2M2, previously obtained by a mutation-selection improvement program. After 7 years of maintenance, TisoS2M2 still displayed improved lipid traits compared with the native strain, demonstrating that a mutation-selection improvement program is suitable for obtaining a domesticated strain with stable, improved phenotype over time. We identified specific genetic variations between the native and domesticated strains and focused on the dynamics of transposable elements (TEs). DNA transposons mainly caused specific TE indels of the domesticated strain TisoS2M2, and some specific TE indels may have impacted genes associated to the neutral lipid pathway. We revealed transposition events for TEs in T. lutea and discussed on the potential role of the improvement program on their activity.