Hepatic ischemia-reperfusion (I/R) injury is still a major risk factor and unsolved problem in hepatic surgery. Methyltransferase-like 3 (METTL3), an important m 6 A-modified methylase, regulates inflammation and cellular stress response. In this study, we demonstrated the special role of METTL3 and its underlying mechanism in hepatic I/R injury. In the mouse model of hepatic I/R and in the oxygen-glucose deprivation and reoxygenation (OGD/R)-induced AML12 and NCTC 1469 cells, the expression of METTL3 was significantly upregulated. Inhibition of METTL3 in OGD/R-induced AML12 and NCTC 1469 cells both increased the cell viability, declined the cell apoptosis, and decreased the reactive oxygen species (ROS) and the release levels of interleukin-1β (IL-1β) and interleukin-18 (IL-18), diminishing NLRP3 and Caspase1-p20 expressions. Moreover, METTL3 positively modulated TXNIP expression in an m 6 A manner. TXNIP overexpression reversed the effects of METTL3 knockdown on OGD/R-induced injury in AML12 cells. Furthermore, inhibition of NLRP3 inflammasome activity contributed to the protective effects of TXNIP knockdown in OGD/R-induced AML12 cells. In conclusion, METTL3 knockdown alleviated OGD/R-induced hepatocyte injury, and the specific mechanism was associated with the inhibition of NLRP3 inflammasome activation, which was attributed to the reduction of TXNIP in an m 6 A-dependent manner.
Keyphrases
- nlrp inflammasome
- induced apoptosis
- cell cycle arrest
- high glucose
- diabetic rats
- oxidative stress
- acute myeloid leukemia
- endoplasmic reticulum stress
- poor prognosis
- cell death
- cell proliferation
- signaling pathway
- drug induced
- heart failure
- acute myocardial infarction
- metabolic syndrome
- long non coding rna
- minimally invasive
- dna damage
- brain injury
- subarachnoid hemorrhage
- blood pressure
- insulin resistance
- pi k akt
- coronary artery bypass
- weight loss
- binding protein
- surgical site infection