The inherent heterogeneity of tumor-derived exosomes holds great promise for enhancing the precision of cancer diagnostics. MicroRNAs (miRNAs) encapsulated in tumor-associated exosomes have emerged as valuable biomarkers for the early detection of cancers. Nevertheless, the flexible structure and inherent instability of RNA limit its application in biological diagnostics. The CRISPR-Cas13a system, distinguished by its target-responsive "collateral effect", represents a powerful tool for advancing cancer diagnostics. In this study, we harness the CRISPR-Cas13a system as an innovative signal amplification tool to image cancer-related exosomal miRNA in situ. Furthermore, we capitalize on the thermophoretic aggregation effect exhibited by gold nanoparticles (Au NPs) to consolidate the fluorescent signals generated by the CRISPR-Cas13a system. Subsequently, the developed nanoprobe is applied to detect lung cancer-related exosomal miRNA from human serum, enabling the aggregated visualization of low-abundance cancer exosomes in individuals with lung cancer compared with healthy individuals. This sensitive thermophoretic aggregation assay provides a diagnostic tool for lung cancer in the clinic.
Keyphrases
- crispr cas
- genome editing
- papillary thyroid
- mesenchymal stem cells
- stem cells
- gold nanoparticles
- squamous cell
- primary care
- high resolution
- squamous cell carcinoma
- high throughput
- deep learning
- machine learning
- photodynamic therapy
- living cells
- single cell
- lymph node metastasis
- bone marrow
- sensitive detection
- drug delivery
- antibiotic resistance genes