High-security photoacoustic identity recognition by capturing hierarchical vascular structure of finger.
Mingman SunYuanzheng MaZhuangzhuang TongZhiyang WangWuyu ZhangSihua YangPublished in: Journal of biophotonics (2021)
Currently, most biometric methods mainly use single features, making them easily forged and cracked. In this study, a novel triple-layers biometric recognition method, based on photoacoustic microscopy, is proposed to improve the security of biometric identity recognition. Using the photoacoustic (PA) dermoscope, three-dimensional absorption-structure information of the fingers was obtained. Then, by combining U-Net, Gabor filtering, wavelet analysis and morphological transform, a lightweight algorithm called photoacoustic depth feature recognition algorithm (PADFR) was developed to automatically realize stratification (the fingerprint, blood vessel fingerprint and venous vascular), extracting feature points and identity recognition. The experimental results show that PADFR can automatically recognize the PA hierarchical features with an average accuracy equal to 92.99%. The proposed method is expected to be widely used in biometric identification system due to its high security.