Chronic exercise impairs nitric oxide pathway in rabbit carotid and femoral arteries.
Patricia MarchioSolanye Guerra-OjedaJosé M VilaMartín AldasoroSoraya L VallesCarlos SolerMaria D MauricioPublished in: The Journal of physiology (2018)
The present study aimed to evaluate the effects of chronic exercise on vasodilator response in two different arteries. Rings of carotid and femoral arteries from control and trained rabbits were suspended in organ baths for isometric recording of tension. Endothelial nitric oxide synthase (eNOS), Cu/Zn and Mn-superoxide dismutase (SOD), and large conductance calcium activated potassium (BKCa) channel protein expression were measured by western blotting. In the carotid artery, training reduced the relaxation to ACh (10-9 to 3 × 10-6 m) that was reversed by N-acetylcysteine (10-3 m). l-NAME (10-4 m) reduced the relaxation to ACh in both groups, although the effect was lower in the trained group (in mean ± SEM, 39 ± 2% vs. 28 ± 3%). Physical training did not modify the relaxation to ACh in femoral arteries, although the response to l-NAME was lower in the trained group (in mean ± SEM, 41 ± 5% vs. 17 ± 2%). Charybdotoxin (10-7 m) plus apamin (10-6 m) further reduced the maximal relaxation to ACh only in the trained group. The remaining relaxation in both carotid and femoral arteries was abolished by KCl (2 × 10-2 m) and BaCl2 (3 × 10-6 m) plus ouabain (10-4 m) in both groups. Physical training decreased eNOS expression in both carotid and femoral arteries and Cu/Zn and Mn-SOD expression only in the carotid artery. BKCa channels were overexpressed in the trained group in the femoral artery. In conclusion, chronic exercise induces endothelial dysfunction in the carotid artery as a result of oxidative stress. In the femoral artery, it modifies the vasodilator pathways, enhancing the participation of BKCa channels, thus compensating for the impairment of NO-mediated vasodilatation.
Keyphrases
- resistance training
- nitric oxide synthase
- nitric oxide
- physical activity
- high intensity
- body composition
- single molecule
- oxidative stress
- poor prognosis
- endothelial cells
- blood flow
- hydrogen peroxide
- pi k akt
- heart rate
- metal organic framework
- amyotrophic lateral sclerosis
- blood pressure
- ischemia reperfusion injury
- signaling pathway
- long non coding rna