Login / Signup

On the beneficent thickness of water.

Elbert BranscombM J Russell
Published in: Interface focus (2019)
In the 1930s, Lars Onsager published his famous 'reciprocal relations' describing free energy conversion processes. Importantly, these relations were derived on the assumption that the fluxes of the processes involved in the conversion were proportional to the forces (free energy gradients) driving them. For chemical reactions, however, this condition holds only for systems operating close to equilibrium-indeed very close; nominally requiring driving forces to be smaller than k B T. Fairly soon thereafter, however, it was quite inexplicably observed that in at least some biological conversions both the reciprocal relations and linear flux-force dependency appeared to be obeyed no matter how far from equilibrium the system was being driven. No successful explanation of how this 'paradoxical' behaviour could occur has emerged and it has remained a mystery. We here argue, however, that this anomalous behaviour is simply a gift of water, of its viscosity in particular; a gift, moreover, without which life almost certainly could not have emerged. And a gift whose appreciation we primarily owe to recent work by Prof. R. Dean Astumian who, as providence has kindly seen to it, was led to the relevant insights by the later work of Onsager himself.
Keyphrases
  • molecular dynamics
  • molecular dynamics simulations
  • optical coherence tomography
  • single molecule
  • randomized controlled trial
  • aqueous solution