Login / Signup

Extracellular DNA enhances biofilm integrity and mechanical properties of mucoid Pseudomonas aeruginosa .

Danielle L FergusonErin S GloagMatthew R ParsekDaniel J Wozniak
Published in: Journal of bacteriology (2023)
Pseudomonas aeruginosa is one of the most common biofilm-forming pathogens responsible for lung infections of individuals with cystic fibrosis (CF). P. aeruginosa becomes tolerant to antimicrobials in the biofilm state and is difficult to treat. Production of extracellular polymeric substances (EPS), such as alginate and extracellular DNA (eDNA), can allow adherence to abiotic and biotic surfaces, antimicrobial evasion, and resilience to environmental pressures. Alginate-producing mucoid variants of P. aeruginosa are frequently isolated from CF airway samples and are associated with worsening patient outcomes. While eDNA is a major structural component of nonmucoid P. aeruginosa biofilms, the potential role of eDNA in mucoid biofilms is unclear. Here, we investigate how eDNA contributes to clinical mucoid biofilm physiology and integrity. We predicted that eDNA plays a structural and mechanical role in mucoid biofilms. To test this, we quantified biofilm eDNA in mucoid biofilms and used microscopy and rheology to visualize eDNA and detect changes in biofilm structure and mechanics upon DNaseI treatment. We showed that biofilm eDNA abundance is diverse across clinical mucoid strains and observed a temporal increase in foci of eDNA within intact mucoid biofilms. Increased cell dispersal and reduced biomass were also observed following DNaseI treatment of mucoid biofilms. Degradation of eDNA also impacted the mechanical integrity of mucoid biofilms by increasing the stiffness and decreasing the cohesion of the biofilm. These findings advance our understanding of clinical mucoid P. aeruginosa biofilms and facilitate the development of new approaches to target biofilms by exploiting the functions of EPS components. IMPORTANCE Understanding the role of eDNA in mucoid Pseudomonas aeruginosa biofilms will lead to therapeutic strategies that combat the biophysical and structural function of EPS for the eradication of bacteria in mucoid biofilms during chronic infections. This knowledge can be used to further identify unknown matrix component interactions within pathogenic biofilm-forming clinical isolates.
Keyphrases