Login / Signup

The Impact of Scene Context on Visual Object Recognition: Comparing Humans, Monkeys, and Computational Models.

Sara DjambazovskaAnaa ZaferHamidreza RamezanpourGabriel KreimanKohitij Kar
Published in: bioRxiv : the preprint server for biology (2024)
During natural vision, we rarely see objects in isolation but rather embedded in rich and complex contexts. Understanding how the brain recognizes objects in natural scenes by integrating contextual information remains a key challenge. To elucidate neural mechanisms compatible with human visual processing, we need an animal model that behaves similarly to humans, so that inferred neural mechanisms can provide hypotheses relevant to the human brain. Here we assessed whether rhesus macaques could model human context-driven object recognition by quantifying visual object identification abilities across variations in the amount, quality, and congruency of contextual cues. Behavioral metrics revealed strikingly similar context-dependent patterns between humans and monkeys. However, neural responses in the inferior temporal (IT) cortex of monkeys that were never explicitly trained to discriminate objects in context, as well as current artificial neural network models, could only partially explain this cross-species correspondence. The shared behavioral variance unexplained by context-naive neural data or computational models highlights fundamental knowledge gaps. Our findings demonstrate an intriguing alignment of human and monkey visual object processing that defies full explanation by either brain activity in a key visual region or state-of-the-art models.
Keyphrases