An In Situ Depolymerization and Liquid Chromatography-Tandem Mass Spectrometry Method for Quantifying Polylactic Acid Microplastics in Environmental Samples.
Lei WangYawen PengYali XuJunjie ZhangTao ZhangMengqi YanHongwen SunPublished in: Environmental science & technology (2022)
Polylactic acid (PLA) is the most commonly used biodegradable plastic with rapid growth in recent years. This leads to predictable increased pollution of PLA microplastics (MPs) in the environment. However, quantification methods for the PLA MPs are still lacking. In this study, a method based on alkali-assisted thermal depolymerization and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis was developed to quantify PLA MPs. After the background monomer compound was removed, PLA MPs were efficiently depolymerized to lactic acid and detected by LC-MS/MS with a limit of quantification of 18.7 ng/g. The ideal recovery of spiked PLA MPs of 93% was obtained, and the PLA MPs did not need to be separated or extracted in advance from the environmental samples. Using this method, PLA MPs were detected in all the sediment samples of a reservoir at a range of 53.5-491 ng/g dw, and the concentrations decreased with the sediment depth. In addition, after soaking in water at 95 °C for 30 min, approximately 12 μg of PLA MPs was released from a single teabag.