Login / Signup

MicroRNA-34a-5p promotes the progression of osteoarthritis secondary to developmental dysplasia of the hip by restraining SESN2-induced autophagy.

Jun WangXiaopeng LiXiang GuoCongcong WangZezhong LiuXiaoguang LiuYanshan SunXiaohua ChenYimin ZhangGaoyang Chen
Published in: Journal of orthopaedic research : official publication of the Orthopaedic Research Society (2023)
Osteoarthritis (OA), a late-stage complication of developmental dysplasia of the hip (DDH), is a key factor leading to further degeneration of joint function. Studies have shown that Sestrin2 (SESN2) is a positive regulator in protecting articular cartilage from degradation. However, the regulatory effects of SESN2 on DDH-OA and its upstream regulators remain obscure. Here, we first identified that the expression of SESN2 significantly decreased in the cartilage of DDH-OA samples, with an expression trend negatively correlated with OA severity. Using RNA sequencing, we identified that the upregulation of miR-34a-5p may be an important factor for the decrease in SESN2 expression. Further exploring the regulation mechanism of miR-34a-5p/SESN2 is of great significance for understanding the mechanism of DDH occurrence and development. Mechanistically, we showed that miR-34a-5p could significantly inhibit the expression of SESN2, thereby promoting the activity of the mTOR signaling pathway. We also found that miR-34a-5p significantly inhibited SESN2-induced autophagy, thereby suppressing the proliferation and migration of chondrocytes. We further validated that knocking down miR-34a-5p in vivo resulted in a significant increase in SESN2 expression and autophagy activity in DDH-OA cartilage. Our study suggests that miR-34a-5p is a negative regulator of DDH-OA, and may provide a new target for the prevention of DDH-OA. This article is protected by copyright. All rights reserved.
Keyphrases