Oxidative stress biomarkers and free amino acid concentrations in the blood plasma of moderately exercised horses indicate adaptive response to prolonged exercise training.
Elizabeth C OttClay A CavinderShangshang WangTrent SmithCaleb O LemleyThu T N DinhPublished in: Journal of animal science (2022)
Oxidative stress caused by routine physical stressors may negatively impact the performance of equine athletes; thus, the present study identifies oxidative biomarkers in the blood plasma of exercising horses. Stock-type horses were subject to a standardized moderate-intensity exercise protocol 3 times per week for 8 wk. Exercise protocol followed NRC guidelines consisting of 30% walk, 55% trot, and 15% canter, with a target heart rate (HR) of 90 BPM. Blood plasma was collected in wk 1, 2, 7, and 8 immediately before and 0, 30, 60, and 90 min after exercise and analyzed for total antioxidant capacity (TAC), thiobarbituric acid reactive substance (TBARS), glutathione peroxidase activity (GPx), and superoxide dismutase activity (SOD). Data were analyzed as repeated measures with wk, d, time, and their interactions as fixed effects. The TAC on day 2 (0.40 mM Trolox) was 7.5% greater than on day 3 (P = 0.013). There were wk × d × time interactions for SOD, TBARS, and GPx (P < 0.001). The TBARS remained at pre-exercise baseline (d-1 wk-1; 2.7 µM malondialdehyde) for most collection times within weeks 1, 7, and 8 (P ≥ 0.058); however, TBARS increased by 0.24 to 0.41 µM on day 2 of week 2 post-exercise (P < 0.001) and remained similarly elevated on day 3 pre- and immediately post-exercise (P < 0.001). The GPx similarly remained at baseline (172.6 µM/min; P ≥ 0.621) but increased by 48.18 to 83.4 µM/min at most collection times on days 1 and 2 of week 2 (P ≤ 0.023). The SOD remained at baseline (167.2 U/ mL; P ≥ 0.055) until increasing by 11.28 to 15.61 U/mL at 30 min post-exercise on day 1, week 1 and at most collection times on day 3, week 8 (P ≤ 0.043). Amino acids with antioxidant properties such as Met, Tyr, and Trp drastically decreased from weeks 2 to 8 (P < 0.001). Met and Tyr also decreased from -60 to 90 min (P < 0.047), whereas there was no time effect on Trp concentration (P = 0.841). The current study indicates the time-dependent nature of oxidative stress concerning persistent stressors such as exercise.
Keyphrases
- high intensity
- oxidative stress
- physical activity
- heart rate
- resistance training
- amino acid
- randomized controlled trial
- blood pressure
- clinical trial
- gene expression
- body composition
- tyrosine kinase
- heart rate variability
- dna methylation
- nitric oxide
- hydrogen peroxide
- skeletal muscle
- anti inflammatory
- preterm birth
- study protocol
- electronic health record
- amyotrophic lateral sclerosis