Chronic hepatitis C virus (HCV) infection is associated with 50% incidence of insulin resistance (IR) that is fourfold higher than that in non-HCV population. IR impairs the outcome of antiviral treatment. The molecular mechanisms of IR in HCV are not entirely clear. Experimental and clinical data suggested that hepatitis C virus per se is diabetogenic. However, presence of HCV alone does not affect IR. It was proposed that IR is mediated by proinflammatory cytokines, mainly by TNF-alpha. TNF-alpha potentiates interferon-gamma-induced transcriptional activation of indoleamine 2,3-dioxygenase, the rate-limiting enzyme of tryptophan- (TRP-) kynurenine (KYN) metabolism. Upregulation of TRP-KYN metabolism was reported in HCV patients. KYN and some of its derivatives affect insulin signaling pathways. We hypothesized that upregulation of TRP-KYN metabolism might contribute to the development of IR in HCV. To check this suggestion, we evaluated serum concentrations of TRP and KYN and HOMA-IR and HOMA-beta in 60 chronic HCV patients considered for the treatment with IFN-alpha. KYN and TRP concentrations correlated with HOMA-IR and HOMA-beta scores. Our data suggest the involvement of KYN and its metabolites in the development of IR in HCV patients. TRP-KYN metabolism might be a new target for prevention and treatment of IR in HCV patients.
Keyphrases
- hepatitis c virus
- end stage renal disease
- ejection fraction
- human immunodeficiency virus
- newly diagnosed
- chronic kidney disease
- insulin resistance
- peritoneal dialysis
- prognostic factors
- rheumatoid arthritis
- gene expression
- signaling pathway
- dendritic cells
- cell proliferation
- machine learning
- oxidative stress
- long non coding rna
- poor prognosis
- adipose tissue
- pi k akt
- hiv infected
- weight loss
- smoking cessation
- high glucose