Reducing Stocking Densities and Using Cooling Systems for More Adapted Pigs to High Temperatures When Reared in Intensive Conditions.
Alexandra Contreras-JodarDamián Escribano TortosaJosé Joaquin CerónMarina López-ArjonaPau AymerichCarme SoldevilaEmma FàbregaAntoni DalmauPublished in: Animals : an open access journal from MDPI (2023)
This study is aimed at evaluating the effect of reducing stocking density and using cooling systems to mitigate the negative effects of high temperatures in growing pigs (females and castrated males) reared in intensive conditions (from 25 to 100 kg) during summer (June to October 2020). The experimental design was a 2 × 2 factorial where pigs were provided with an evaporative cooling system and/or raised at regular or at lower stocking densities (i.e., 0.68 to 0.80 m 2 /animal). Treatments were distributed in four different rooms containing sex-balanced pens with either castrated males or females. Temperature and humidity were recorded throughout the experiment, and the temperature-humidity index was calculated. Heat stress (HS) on pigs was measured through changes in animals' performance, animal-based indicators (dirtiness and activity budget) and physiological indicators (neutrophil/lymphocyte ratio and hair cortisol). The use of cooling, lowering stocking density and the combination of both strategies had positive effects on pigs' final body weight (+5 kg, +3 kg, +9 kg, respectively; p < 0.001). The prevalence of dirtiness was similar at the stocking densities tested, and no clear effect of the cooling system was found. Both mitigation strategies lowered the physiological indicators of stress, although only hair cortisone can be considered an indicator of HS. In conclusion, both mitigation strategies are effective in improving pig welfare and performance, especially when both are combined. The severity of the stocking density effect may depend on the severity of the temperature.