Normal Aging Affects the Short-Term Temporal Stability of Implicit, But Not Explicit, Motor Learning following Visuomotor Adaptation.
Guneet BindraRylee BrowerRyan NorthWeiwei ZhouWilsaan M JoinerPublished in: eNeuro (2021)
Normal aging is associated with a decline in memory and motor learning ability. However, the exact form of these impairments (e.g., the short-term temporal stability and affected learning mechanisms) is largely unknown. Here, we used a sensorimotor adaptation task to examine changes in the temporal stability of two forms of learning (explicit and implicit) because of normal aging. Healthy young subjects (age range, 19-28 years; 20 individuals) and older human subjects (age range, 63-85 years; 19 individuals) made reaching movements in response to altered visual feedback. On each trial, subjects turned a rotation dial to select an explicit aiming direction. Once selected, the display was removed and subjects moved the cursor from the start position to the target. After initial training with the rotational feedback perturbation, subjects completed a series of probe trials at different delay periods to systematically assess the short-term retention of learning. For both groups, the explicit aiming showed no significant decrease over 1.5 min. However, this was not the case for implicit learning; the decay pattern was markedly different between groups. Older subjects showed a linear decrease of the implicit component of adaptation over time, while young subjects showed an exponential decay over the same period (time constant, 25.61 s). Although older subjects adapted at a similar rate, these results suggest natural aging selectively impacts the short-term (seconds to minutes) temporal stability of implicit motor learning mechanisms. This understanding may provide a means to dissociate natural aging memory impairments from deficits caused by brain disorders that progress with aging.