Inhibition of PIM Kinases in DLBCL Targets MYC Transcriptional Program and Augments the Efficacy of Anti-CD20 Antibodies.
Maciej SzydłowskiFilip GarbiczEwa JabłońskaPatryk GórniakDorota KomarBeata PyrzyńskaKamil BojarczukMonika Prochorec-SobieszekAnna Szumera-CiećkiewiczGrzegorz RymkiewiczMagdalena CybulskaMałgorzata StatkiewiczMarta GajewskaMichał MikulaAniela GołasJoanna DomagałaMagdalena WiniarskaAgnieszka Graczyk-JarzynkaEmilia BiałopiotrowiczAnna PolakJoanna BarankiewiczBartosz PułaMichał PawlakDominika NowisJakub GolabAndrea M TomirottiKrzysztof BrzózkaMariana Pacheco-BlancoKristyna KupcovaMichael R GreenOndrej HavranekBjoern ChapuyPrzemysław JuszczyńskiPublished in: Cancer research (2021)
The family of PIM serine/threonine kinases includes three highly conserved oncogenes, PIM1, PIM2, and PIM3, which regulate multiple prosurvival pathways and cooperate with other oncogenes such as MYC. Recent genomic CRISPR-Cas9 screens further highlighted oncogenic functions of PIMs in diffuse large B-cell lymphoma (DLBCL) cells, justifying the development of small-molecule PIM inhibitors and therapeutic targeting of PIM kinases in lymphomas. However, detailed consequences of PIM inhibition in DLBCL remain undefined. Using chemical and genetic PIM blockade, we comprehensively characterized PIM kinase-associated prosurvival functions in DLBCL and the mechanisms of PIM inhibition-induced toxicity. Treatment of DLBCL cells with SEL24/MEN1703, a pan-PIM inhibitor in clinical development, decreased BAD phosphorylation and cap-dependent protein translation, reduced MCL1 expression, and induced apoptosis. PIM kinases were tightly coexpressed with MYC in diagnostic DLBCL biopsies, and PIM inhibition in cell lines and patient-derived primary lymphoma cells decreased MYC levels as well as expression of multiple MYC-dependent genes, including PLK1. Chemical and genetic PIM inhibition upregulated surface CD20 levels in an MYC-dependent fashion. Consistently, MEN1703 and other clinically available pan-PIM inhibitors synergized with the anti-CD20 monoclonal antibody rituximab in vitro, increasing complement-dependent cytotoxicity and antibody-mediated phagocytosis. Combined treatment with PIM inhibitor and rituximab suppressed tumor growth in lymphoma xenografts more efficiently than either drug alone. Taken together, these results show that targeting PIM in DLBCL exhibits pleiotropic effects that combine direct cytotoxicity with potentiated susceptibility to anti-CD20 antibodies, justifying further clinical development of such combinatorial strategies. SIGNIFICANCE: These findings demonstrate that inhibition of PIM induces DLBCL cell death via MYC-dependent and -independent mechanisms and enhances the therapeutic response to anti-CD20 antibodies by increasing CD20 expression.
Keyphrases
- diffuse large b cell lymphoma
- induced apoptosis
- transcription factor
- epstein barr virus
- small molecule
- crispr cas
- cell death
- poor prognosis
- endoplasmic reticulum stress
- gene expression
- protein kinase
- middle aged
- long non coding rna
- drug induced
- cell proliferation
- copy number
- combination therapy
- drug delivery
- replacement therapy
- bioinformatics analysis