Login / Signup

FAVA: high-quality functional association networks inferred from scRNA-seq and proteomics data.

Mikaela KoutrouliKaterina C NastouPau Piera LíndezRobbin BouwmeesterSimon RasmussenLennart MartensLars Juhl Jensen
Published in: Bioinformatics (Oxford, England) (2024)
Source code, documentation, and tutorials for FAVA are accessible on GitHub at https://github.com/mikelkou/fava. FAVA can also be installed and used via pip/PyPI <pip install favapy> as well as via the scverse ecosystem https://github.com/scverse/ecosystem-packages/tree/main/packages/favapy.
Keyphrases
  • climate change
  • electronic health record
  • human health
  • mass spectrometry
  • genome wide
  • single cell
  • rna seq
  • big data
  • gene expression
  • dna methylation
  • deep learning
  • label free