Login / Signup

Visible-Light-Driven Alkyne Hydro-/Carbocarboxylation Using CO2 via Iridium/Cobalt Dual Catalysis for Divergent Heterocycle Synthesis.

Jing HouAloysius EeWei FengJin-Hui XuYu ZhaoJie Wu
Published in: Journal of the American Chemical Society (2018)
We present herein the first visible-light-driven hydrocarboxylation as well as carbocarboxylation of alkynes using CO2 via an iridium/cobalt dual catalysis. Such transformations provide access to various pharmaceutically important heterocycles in a one-pot procedure from readily available alkynes. Coumarins, 2-quinolones, and 2-benzoxepinones were directly accessed through a one-pot alkyne hydrocarboxylation/alkene isomerization/cyclization sequence in which the Ir photocatalyst serves a dual role to promote single-electron transfer in alkyne hydrocarboxylation and energy transfer in the subsequent alkene isomerization. Moreover, an unprecedented cobalt carboxylation/acyl migration cascade enables alkyne difunctionalization to introduce γ-hydroxybutenolides with high efficiency. We expect that this cascade strategy will inspire new perspectives for alkyne and alkene difunctionalization.
Keyphrases
  • visible light
  • high efficiency
  • energy transfer
  • electron transfer
  • reduced graphene oxide
  • metal organic framework
  • quantum dots
  • fatty acid
  • highly efficient