Login / Signup

The impact of 2 years of high-intensity exercise training on a model of integrated cardiovascular regulation.

Michinari HiedaErin J HowdenSatyam SarmaWilliam K CornwellJustin S LawleyTakashi TarumiDean PalmerMitchel SamelsBraden EverdingSheryl LivingstonQi FuRong ZhangBenjamin D Levine
Published in: The Journal of physiology (2018)
Assessing the effects of exercise training on cardiovascular variability is challenging because of the complexity of multiple mechanisms. In a prospective, parallel-group, randomized controlled study, we examined the effect of 2 years of high-intensity exercise training on integrated cardiovascular function, which incorporates the dynamic Starling mechanism, dynamic arterial elastance and arterial-cardiac baroreflex function. Sixty-one healthy participants (48% male, aged 53 years, range 52-54 years) were randomized to either 2 years of exercise training (exercise group: n = 34) or control/yoga group (controls: n = 27). Before and after 2 years, subjects underwent a 6 min recording of beat-by-beat pulmonary artery diastolic pressure (PAD), stroke volume index (SV index), systolic blood pressure (sBP) and RR interval measurements with controlled respiration at 0.2 Hz. The dynamic Starling mechanism, dynamic arterial elastance and arterial-cardiac baroreflex function were calculated by transfer function gain between PAD and SV index; SV index and sBP; and sBP and RR interval, respectively. Fifty-three participants (controls: n = 25; exercise group: n = 28) completed the intervention. After 2 years, the dynamic Starling mechanism gain (Group × Time interaction: P = 0.008) and the arterial-cardiac baroreflex gain (P = 0.005) were significantly increased in the exercise group but remained unchanged in the controls. There was no change in dynamic arterial elastance in either of the two groups. The integrated cardiovascular function gain in the exercise group increased 1.34-fold, whereas there was no change in the controls (P = 0.02). In these previously sedentary, otherwise healthy middle-aged adults, a 2 year programme of high-intensity exercise training improved integrated cardiovascular regulation by enhancing the dynamic Starling mechanism and arterial-cardiac baroreflex sensitivity, without changing dynamic arterial elastance.
Keyphrases