Ruthenium-Catalyzed Multicomponent Reactions: Access to α-Silyl-β-Hydroxy Vinylsilanes, Stereodefined 1,3-Dienes, and Cyclohexenes.
Barry M TrostDennis C KoesterEhesan U SharifPublished in: Chemistry (Weinheim an der Bergstrasse, Germany) (2016)
The synthesis of densly functionized α-silyl-β-hydroxyl vinylsilanes via ruthenium-catalyzed multicomponent reaction (MCR) is reported herein. Exceptionally high regio- and diastereoselectivity was achieved by employing an unprecedented hydrosilylation of bifunctional silyl-propargyl boronates. The simple protocol, mild reaction conditions, and unique tolerability of this method make it a valuable tool for the synthesis of highly elaborated building blocks. The one-pot synthesis of stereodefined olefins, the generation of a valuable cyclohexene building block through a four-component MCR, and further functionalization in an abundance of diastereoselective reactions is disclosed herein.