Login / Signup

Diaporine Potentiates the Anticancer Effects of Oxaliplatin and Doxorubicin on Liver Cancer Cells.

Shiliu TianRui SuKe WuXuhan ZhouJaydutt V VadgamaYong Wu
Published in: Journal of personalized medicine (2022)
Recent studies have shown that diaporine, a novel fungal metabolic product, has a strong in vitro and in vivo anticancer effect on human non-small-cell lung and breast cancers. In this study, three human hepatocarcinoma cell lines (HepG2, Hep3B, and Huh7) were used to evaluate the efficacy of diaporine alone and in combination with the standard cytotoxic drugs oxaliplatin and doxorubicin for the treatment of liver cancer. We demonstrated that diaporine, oxaliplatin, and doxorubicin triggered a concentration- and time-dependent decrease in the number of HepG2 cells. Diaporine at a concentration of 2.5 μM showed almost 100% inhibition of cell counts at 72 h. Similar effects were observed only with much higher concentrations (100 μM) of oxaliplatin or doxorubicin. Decreases in cell numbers after 48 h treatment with diaporine, oxaliplatin, and doxorubicin were also demonstrated in two additional hepatoma cell lines, Hep3B and Huh7. The combination of these drugs at low concentration for 48 h in vitro noticeably showed that diaporine improved the inhibitory effect on the number of cancer cells induced by oxaliplatin or doxorubicin. Additionally, this combination effectively inhibited colony growth in vitro. We found that inhibition of phosphorylation of ERK1/2 significantly increased when diaporine was used in combination with other agents. In addition, we also found that when diaporine was used in combination with doxorubicin or oxaliplatin, their proapoptotic effect greatly increased. We further revealed that the induction of apoptosis in hepatoma cells after treatment is due, at least in part, to the inhibition of phosphorylation of AKT, leading to the activation of caspase-3, inactivation of poly (ADP-ribose) polymerase (PARP), and subsequently to DNA damage, as indicated by the increased level of H2AX. Based on these findings, we suggest that diaporine in combination with the standard cytotoxic drugs oxaliplatin and doxorubicin may play a role in the treatment of liver cancer.
Keyphrases
  • drug delivery
  • cancer therapy
  • dna damage
  • single cell
  • endothelial cells
  • cell therapy
  • induced apoptosis
  • oxidative stress
  • signaling pathway
  • stem cells
  • cell cycle arrest
  • bone marrow
  • drug induced
  • pluripotent stem cells