Login / Signup

Marine antifouling performance of polymer coatings incorporating zwitterions.

Claudia VenturaAndrew J GuerinOsama El-ZubirAntonio J Ruiz-SanchezLuke I DixonKevin J ReynoldsMarie L DaleJames FergusonAndrew HoultonBenjamin R HorrocksAnthony S ClareDavid A Fulton
Published in: Biofouling (2017)
Zwitterionic materials display antifouling promise, but their potential in marine anti-biofouling is still largely unexplored. This study evaluates the effectiveness of incorporating small quantities (0-20% on a molar basis) of zwitterions as sulfobetaine methacrylate (SBMA) or carboxybetaine methacrylate (CBMA) into lauryl methacrylate-based coatings whose relatively hydrophobic nature encourages adhesion of the diatom Navicula incerta, a common microfouling organism responsible for the formation of 'slime'. This approach allows potential enhancements in antifouling afforded by zwitterion incorporation to be easily quantified. The results suggest that the incorporation of CBMA does provide a relatively minor enhancement in fouling-release performance, in contrast to SBMA which does not display any enhancement. Studies with coatings incorporating mixtures of varying ratios of the cationic monomer [2-(methacryloyloxy)ethyl]trimethylammonium chloride and the anionic monomer (3-sulfopropyl)methacrylate, which offer a potentially lower cost approach to the incorporation of anionic and cationic charge, suggest these monomers impart little significant effect on biofouling.
Keyphrases