Decoration of Squalenoyl-Gemcitabine Nanoparticles with Squalenyl-Hydroxybisphosphonate for the Treatment of Bone Tumors.
Carlos Rodríguez-NogalesDidier DesmaëleVíctor SebastiánPatrick CouvreurMaría J Blanco-PrietoPublished in: ChemMedChem (2021)
Therapeutic perspectives of bone tumors such as osteosarcoma remain restricted due to the inefficacy of current treatments. We propose here the construction of a novel anticancer squalene-based nanomedicine with bone affinity and retention capacity. A squalenyl-hydroxybisphosphonate molecule was synthetized by chemical conjugation of a 1-hydroxyl-1,1-bisphosphonate moiety to the squalene chain. This amphiphilic compound was inserted onto squalenoyl-gemcitabine nanoparticles using the nanoprecipitation method. The co-assembly led to nanoconstructs of 75 nm, with different morphology and colloidal properties. The presence of squalenyl-hydroxybisphosphonate enhanced the nanoparticles binding affinity for hydroxyapatite, a mineral present in the bone. Moreover, the in vitro anticancer activity was preserved when tested in commercial and patient-treated derived pediatric osteosarcoma cells. Further in vivo studies will shed light on the potential of these nanomedicines for the treatment of bone sarcomas.