Danqi pill (DQP) is a widely prescribed traditional Chinese medicine (TCM) in the treatment of cardiovascular diseases. The objective of this study is to systematically characterize altered gene expression pattern induced by myocardial ischemia (MI) in a rat model and to investigate the effects of DQP on global gene expression. Global mRNA expression was measured. Differentially expressed genes among the sham group, model group, and DQP group were analyzed. The gene ontology enrichment analysis and pathway analysis of differentially expressed genes were carried out. We quantified 10,813 genes. Compared with the sham group, expressions of 339 genes were upregulated and 177 genes were downregulated in the model group. The upregulated genes were enriched in extracellular matrix organization, response to wounding, and defense response pathways. Downregulated genes were enriched in fatty acid metabolism, pyruvate metabolism, PPAR signaling pathways, and so forth. This indicated that energy metabolic disorders occurred in rats with MI. In the DQP group, expressions of genes in the altered pathways were regulated back towards normal levels. DQP reversed expression of 313 of the 516 differentially expressed genes in the model group. This study provides insight into the multitarget mechanism of TCM in the treatment of complex diseases.
Keyphrases
- genome wide
- gene expression
- genome wide identification
- dna methylation
- bioinformatics analysis
- extracellular matrix
- genome wide analysis
- fatty acid
- type diabetes
- metabolic syndrome
- transcription factor
- cell proliferation
- copy number
- heart failure
- insulin resistance
- endoplasmic reticulum stress
- cardiovascular events