Using serosurveys to optimize surveillance for zoonotic pathogens.
Erin ClanceyScott L NuismerStephanie N SeifertPublished in: bioRxiv : the preprint server for biology (2024)
Many deadly pathogens, such as Ebola, Lassa, and Nipah viruses, originate in wildlife and jump to human populations. When this occurs, human health is at risk. At the extreme, this can lead to pandemics such as the West African Ebola epidemic and the COVID-19 pandemic. Despite the widely recognized risk wildlife pathogens pose to humans, identifying host species that serve as primary reservoirs for many pathogens remains challenging. Ebola is a notable example of a pathogen with an unconfirmed wildlife reservoir. A key obstacle to confirming reservoir hosts is sampling animals with active infections. Often, disease prevalence fluctuates seasonally in wildlife populations and only reaches detectable levels at certain times of year. In these cases, statistical models designed to predict the timing of peak prevalence could guide efficient field sampling for active infections. Therefore, we have developed a general model that uses serological data to predict times of year when pathogen prevalence is likely to peak. We demonstrate with simulated data that our method produces reliable predictions, and then apply our method to two hypothesized reservoirs for Ebola virus, straw-colored fruit bats and hammer-headed bats. Our method can be broadly applied to a range of potential reservoir species where seasonal patterns of birth can lead to predictable pulses of peak pathogen prevalence. Overall, our method can guide future sampling of reservoir populations and can also be used to make predictions for times of year that future outbreaks in human populations are most likely to occur.