Dual Labeling of Primary Cells with Fluorescent Gadolinium Oxide Nanoparticles.
Nadine BruneBenedikt MuesEva Miriam BuhlKai-Wolfgang HintzenStefan JockenhoevelChristian G CornelissenIoana SlabuAnja Lena ThiebesPublished in: Nanomaterials (Basel, Switzerland) (2023)
The interest in mesenchymal stromal cells as a therapy option is increasing rapidly. To improve their implementation, location, and distribution, the properties of these must be investigated. Therefore, cells can be labeled with nanoparticles as a dual contrast agent for fluorescence and magnetic resonance imaging (MRI). In this study, a more efficient protocol for an easy synthesis of rose bengal-dextran-coated gadolinium oxide (Gd 2 O 3 -dex-RB) nanoparticles within only 4 h was established. Nanoparticles were characterized by zeta potential measurements, photometric measurements, fluorescence and transmission electron microscopy, and MRI. In vitro cell experiments with SK-MEL-28 and primary adipose-derived mesenchymal stromal cells (ASC), nanoparticle internalization, fluorescence and MRI properties, and cell proliferation were performed. The synthesis of Gd 2 O 3 -dex-RB nanoparticles was successful, and they were proven to show adequate signaling in fluorescence microscopy and MRI. Nanoparticles were internalized into SK-MEL-28 and ASC via endocytosis. Labeled cells showed sufficient fluorescence and MRI signal. Labeling concentrations of up to 4 mM and 8 mM for ASC and SK-MEL-28, respectively, did not interfere with cell viability and proliferation. Gd 2 O 3 -dex-RB nanoparticles are a feasible contrast agent to track cells via fluorescence microscopy and MRI. Fluorescence microscopy is a suitable method to track cells in in vitro experiments with smaller samples.
Keyphrases
- contrast enhanced
- magnetic resonance imaging
- single molecule
- induced apoptosis
- cell cycle arrest
- cell proliferation
- computed tomography
- magnetic resonance
- healthcare
- signaling pathway
- energy transfer
- endoplasmic reticulum stress
- cell death
- primary care
- high resolution
- high throughput
- randomized controlled trial
- oxidative stress
- stem cells
- mesenchymal stem cells
- cell therapy
- cell cycle
- climate change
- smoking cessation
- label free
- human health
- walled carbon nanotubes
- simultaneous determination