Shen-Hong-Tong-Luo Formula Attenuates Macrophage Inflammation and Lipid Accumulation through the Activation of the PPAR-γ/LXR-α/ABCA1 Pathway.
Zepeng ZhangLu ZhaiJing LuSanmiao SunDandan WangDa-Qing ZhaoLiwei SunWeimin ZhaoXiangyan LiYing ChenPublished in: Oxidative medicine and cellular longevity (2020)
Atherosclerosis (AS) is the killer of human health and longevity, which is majorly caused by oxidized lipoproteins that attack macrophages in the endarterium. The Shen-Hong-Tong-Luo (SHTL) formula has shown great clinical efficacy and vascular protective effect for over 30 years in China, to attenuate AS progression. However, its pharmacological mechanism needs more investigation. In this study, we first investigated the chemical composition of SHTL by fingerprint analysis using high-performance liquid chromatography. In primary mouse peritoneal macrophages induced by lipopolysaccharide (LPS), we found that SHTL pretreatment suppressed reactive oxygen species accumulation and reversed the increases of the inflammatory factors, TNF-α and IL-6. Moreover, lipid accumulation induced by oxidized low-density lipoprotein (Ox-LDL) in macrophages was inhibited by SHTL. Additionally, network pharmacology was used to predict the potential targets of SHTL as the PPAR-γ/LXR-α/ABCA1 signaling pathway, which was validated in macrophages and ApoE-/- mice by histopathological staining, qPCR, and Western blot analysis. Importantly, the protective effect of SHTL in the LPS- and Ox-LDL-induced macrophages against inflammation and lipid accumulation was attenuated by GW9662, a PPAR-γ antagonist, which confirmed the prediction results of network pharmacology. In summary, these results indicated that SHTL pretreatment reduced inflammation and lipid accumulation of macrophages by activating the PPAR-γ/LXR-α/ABCA1 pathway, which may provide a new insight into the mechanism of SHTL in the suppression of AS progression.
Keyphrases
- low density lipoprotein
- human health
- oxidative stress
- signaling pathway
- high performance liquid chromatography
- inflammatory response
- insulin resistance
- risk assessment
- reactive oxygen species
- cardiovascular disease
- fatty acid
- adipose tissue
- high fat diet
- diabetic rats
- endothelial cells
- tandem mass spectrometry
- human milk
- south africa
- skeletal muscle
- metabolic syndrome
- atomic force microscopy
- high glucose
- low birth weight
- liquid chromatography
- network analysis