Discovery of Inactive Conformation-Selective Kinase Inhibitors by Utilizing Cascade Assays.
Weixue WangDaniel KroskyKay AhnPublished in: Biochemistry (2017)
Achieving selectivity across the human kinome is a major hurdle in kinase inhibitor drug discovery. Targeting inactive (vs active) kinase conformations offers advantages in achieving selectivity because of their more diversified structures. Discovery of inactive conformation-selective inhibitors, however, has been hampered partly by the lack of general assay methods. Herein, we show that such inhibitors can be discovered by utilizing kinase cascade assays. This type of assay is initiated with the target kinase in its unphosphorylated, inactive conformation, which is activated during the assay. Inactive conformation-selective inhibitors stabilize the inactive kinase, block activation, and yield reduced kinase activity. We investigate the properties of the assay by mathematical modeling, as well as by proof-of-concept experiments using the BRAF-MEK1 cascade. This study demonstrates effective identification of inactive conformation-selective inhibitors by cascade assays, reveals key factors that impact results, and provides guidelines for successful cascade assay development.