Login / Signup

Genomics-directed activation of cryptic natural product pathways deciphers codes for biosynthesis and molecular function.

Yuta Tsunematsu
Published in: Journal of natural medicines (2020)
Natural products, which can be isolated from living organisms worldwide, have played a pivotal role in drug discovery since ancient times. However, it has become more challenging to identify a structurally novel molecule with promising biological activity for pharmaceutical development, mainly due to the limited methodologies for their acquisition. In this review, we summarize our recent studies that activate the biosynthetic potential of filamentous fungi by genetic engineering to harness the metabolic flow for the efficient production of unprecedented natural products. The recent revolution in genome sequencing technology enables the accumulation of vast amounts of information on biosynthetic genes, the blueprint of the molecular construction. Utilizing the established heterologous expression system, activation of the pathway-specific transcription factor coupled with a knockout strategy, and manipulating the global regulatory gene, the biosynthetic genes were exploited to activate biosynthetic pathways and decipher the encoded enzyme functions. We show that this methodology was beneficial for acquiring fungal treasures for drug discovery. These studies also enabled the investigation of the molecular function of natural products in fungal development.
Keyphrases