Login / Signup

Validation of the functions and prognostic values of synapse-associated proteins in lower-grade glioma.

Han LinYong YangChongxian HouYuqing HuangLiting ZhouJiantao ZhengGuangzhao LvRui MaoShanwei ChenPeihong XuYujun ZhouPeng WangDong Zhou
Published in: Bioscience reports (2021)
Synapse and synapse-associated proteins (SAPs) play critical roles in various neurodegeneration diseases and brain tumors. However, in lower-grade gliomas (LGG), SAPs have not been explored systematically. Herein, we are going to explore SAPs expression profile and its clinicopathological significance in LGG which can offer new insights to glioma therapy. In the present study, we integrate a list of SAPs that covered 231 proteins with synaptogenesis activity and post synapse formation. The LGG RNA-seq data were downloaded from GEO, TCGA and CGGA database. The prognosis associated SAPs in key modules of PPI (protein-protein interaction networks) was regarded as hub SAPs. Western blot, quantitative reverse transcription PCR (qRT-PCR) and immunochemistry results from HPA database were used to verify the expression of hub SAPs. There were 68 up-regulated SAPs and 44 down-regulated SAPs in LGG tissue compared with normal brain tissue. Data from function enrichment analysis revealed functions of differentially expressed SAPs in synapse organization and glutamatergic receptor pathway in LGGs. Survival analysis revealed that four SAPs, GRIK2, GABRD, GRID2 and ARC were correlate with the prognosis of LGG patients. Interestingly, we found that GABRD were up-regulated in LGG patients with seizures, indicating that SAPs may link to the pathogenesis of seizures in glioma patients. The four-SAPs signature was revealed as an independent prognostic factor in gliomas. Our study presented a novel strategy to assess the prognostic risks of LGGs, based on the expression of SAPs.
Keyphrases