Tongue-brain-transported ZnO NPs induced abnormal taste perception.

Aijie ChenRuolan WangYiyuan KangJia LiuJunrong WuYanli ZhangYulin ZhangLong-Quan Shao
Published in: Advanced healthcare materials (2023)
Nanoparticles (NPs) can be transported to the brain, especially the nerve, because of their small size and high biological activity. Our previous studies confirmed that zinc oxide (ZnO) NPs could enter the brain through the tongue-brain pathway, but it is unclear whether they would further affect synaptic transmission and brain perception. In this study, we found that tongue-brain-transported ZnO NPs could cause a decrease in taste sensitivity and taste aversion learning ability, indicating abnormal taste perception. Moreover, the release of miniature excitatory postsynaptic currents, the frequency of action potential release and the expression of c-fos were decreased, suggesting that the synaptic transmission was reduced. To further explore the mechanism, we carried out protein chip detection of inflammatory factors and found that neuroinflammation occurs. Importantly, we found that neuroinflammation originated from neurons. The JAK-STAT signaling pathway was activated, which inhibited the Neurexin1-PSD95-Neurologigin1 pathway and c-fos expression. Blocking the activation of the JAK-STAT pathway prevented neuroinflammation and the reduction in Neurexin1-PSD95-Neurologigin1. These results indicate that ZnO NPs could be transported by the tongue-brain pathway and lead to abnormal taste perception by neuroinflammation-induced deficits in synaptic transmission. Our study reveals the influence of ZnO NPs on neuronal function and provides a novel mechanism. This article is protected by copyright. All rights reserved.