Login / Signup

Bis(ethylmaltolato)oxidovanadium (IV) attenuates amyloid-beta-mediated neuroinflammation by inhibiting NF-κB signaling pathway via a PPARγ-dependent mechanism.

Zhijun HeXiaoqian LiShuangxue HanBingyu RenXia HuNan LiXiubo DuJiazuan NiXiaogai YangQiong Liu
Published in: Metallomics : integrated biometal science (2022)
Neuroinflammation plays a pivotal role in the pathophysiology of neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease. During brain neuroinflammation, activated microglial cells resulting from amyloid-beta (Aβ) overload trigger toxic proinflammatory responses. Bis(ethylmaltolato)oxidovanadium (BEOV) (IV), an important vanadium compound, has been reported to have anti-diabetic, anti-cancer, and neuroprotective effects, but its anti-inflammatory property has rarely been investigated. In the present study, the inhibitory effects of BEOV on neuroinflammation were revealed in both Aβ-stimulated BV2 microglial cell line and APPswe/PS1E9 transgenic mouse brain. BEOV administration significantly decreased the levels of tumor necrosis factor-α, interleukin-6, interleukin-1β, inducible nitric oxide synthase, and cyclooxygenase-2 both in the hippocampus of APPswe/PS1E9 mice and in the Aβ-stimulated BV2 microglia. Furthermore, BEOV suppressed the Aβ-induced activation of nuclear factor-κB (NF-κB) signaling and upregulated the protein expression level of peroxisome proliferator-activated receptor gamma (PPARγ) in a dose-dependent manner. PPARγ inhibitor GW9662 could eliminate the effect of BEOV on Aβ-induced NF-κB activation and proinflammatory mediator production. Taken altogether, these findings suggested that BEOV ameliorates Aβ-stimulated neuroinflammation by inhibiting NF-κB signaling pathway through a PPARγ-dependent mechanism.
Keyphrases