The genome sequencing and comparative analysis of a wild kiwifruit Actinidia eriantha.
Xiaohong YaoShuaibin WangZupeng WangDawei LiQuan JiangQiong ZhangLei GaoCaihong ZhongHongwen HuangYi-Fei LiuPublished in: Molecular horticulture (2022)
The current kiwifruit industry is mainly based on the cultivars derived from the species Actinidia chinensis (Ac) which may bring risks such as canker disease. Introgression of desired traits from wild relatives is an important method for improving kiwifruit cultivars. Actinidia eriantha (Ae) is a particularly important taxon used for hybridization or introgressive breeding of new kiwifruit cultivars because of its valued species-specific traits. Here, we assembled a chromosome-scale high-quality genome of a Ae sample which was directly collected from its wild populations. Our analysis revealed that 41.3% of the genome consists of repetitive elements, comparable to the percentage in Ac and Ae cultivar "White" genomes. The genomic structural variation, including the presence/absence-variation (PAV) of genes, is distinct between Ae and Ac, despite both sharing the same two kiwifruit-specific whole genome duplication (WGD) events. This suggests that a post-WGD divergence mechanism occurred during their evolution. We further investigated genes involved in ascorbic acid biosynthesis and disease-resistance of Ae, and we found introgressive genome could contribute to the complex relationship between Ae and other representative kiwifruit taxa. Collectively, the Ae genome offers valuable genetic resource to accelerate kiwifruit breeding applications.