Enniatins from a marine-derived fungus Fusarium sp. inhibit biofilm formation by the pathogenic fungus Candida albicans.
Hiroaki SasakiSanae KurakadoYasuhiko MatsumotoYuta YoshinoTakashi SugitaKiyotaka KoyamaKaoru KinoshitaPublished in: Journal of natural medicines (2023)
Candidemia is a life-threatening disease common in immunocompromised patients, and is generally caused by the pathogenic fungus Candida albicans. C. albicans can change morphology from yeast to hyphae, forming biofilms on medical devices. Biofilm formation contributes to the virulence and drug tolerance of C. albicans, and thus compounds that suppress this morphological change and biofilm formation are effective for treating and preventing candidemia. Marine organisms produce biologically active and structurally diverse secondary metabolites that are promising lead compounds for treating numerous diseases. In this study, we explored marine-derived fungus metabolites that can inhibit morphological change and biofilm formation by C. albicans. Enniatin B (1), B1 (2), A1 (3), D (4), and E (5), visoltricin (6), ergosterol peroxide (7), 9,11-dehydroergosterol peroxide (8), and 3β,5α,9α-trihydroxyergosta-7,22-dien-6-one (9) were isolated from the marine-derived fungus Fusarium sp. Compounds 1-5 and 8 exhibited inhibitory activity against hyphal formation by C. albicans, and compounds 1-3 and 8 inhibited biofilm formation by C. albicans. Furthermore, compounds 1-3 decreased cell surface hydrophobicity and expression of the hypha-specific gene HWP1 in C. albicans. Compound 1 was obtained in the highest yield. An in vivo evaluation system using silkworms pierced with polyurethane fibers (a medical device substrate) showed that compound 1 inhibited biofilm formation by C. albicans in vivo. These results indicate that enniatins could be lead compounds for therapeutic agents for biofilm infections by C. albicans.