Multifunctional Applications of Blow-Spinning Setaria viridis Structured Fibrous Membranes in Water Purification.
Tao LuYankang DengJiaxin CuiWenxuan CaoQingli QuYulin WangRanhua XiongWenjing MaJian-Du LeiChaobo HuangPublished in: ACS applied materials & interfaces (2021)
With increasing water pollution and human health problems caused by oily wastewater, the fabrication of oil-water separation materials has become an urgent task. However, most of the reported materials have a single function and poor performance. In this paper, a multifunctional zinc oxide/polyaniline/polyacrylonitrile (ZnO/PANI/PAN) nanofibrous membrane with needle-like ZnO nanorods was prepared by in situ synthesis of PANI and a hydrothermal reaction on a highly stable self-standing PAN blow-spinning fibrous membrane. Due to the electronic synergistic effect of ZnO and PANI, the fibrous membrane exhibits excellent antibacterial activity and visible-light degradation ability of organic dyes. Moreover, the micro-/nanosized pores of the ZnO/PANI/PAN fibrous membranes also guarantee its excellent emulsion separation performance, including an ultrahigh surfactant-free emulsion permeate flux (∼8597.40 L/(m2 h)), ultrahigh surfactant-stabilized emulsion permeate flux (∼2253.50 L/(m2 h)), and excellent separation efficiency (above 99%). Furthermore, the composite membrane maintains stable underwater superoleophobicity and hydrophilicity under adverse conditions, shows good biological safety, and is harmless to the water environment. These excellent properties endow the ZnO/PANI/PAN nanofibrous membranes with great potential in treating oily wastewater.
Keyphrases
- visible light
- human health
- reduced graphene oxide
- room temperature
- risk assessment
- quantum dots
- cancer therapy
- drug delivery
- liquid chromatography
- mental health
- climate change
- wastewater treatment
- gold nanoparticles
- emergency department
- anaerobic digestion
- tissue engineering
- light emitting
- fatty acid
- ionic liquid
- solid state
- particulate matter
- silver nanoparticles
- high resolution
- water quality