Selection of preferred thermal environment and cold-avoidance responses in rats rely on signals transduced by the dorsal portion of the lateral funiculus of the spinal cord.
Robson Cristiano Lillo VizinMaria Camila AlmeidaRenato Nery SorianoAndrej A RomanovskyPublished in: Temperature (Austin, Tex.) (2023)
Thermoregulatory behaviors are powerful effectors for core body temperature (T c ) regulation. We evaluated the involvement of afferent fibers ascending through the dorsal portion of the lateral funiculus (DLF) of the spinal cord in "spontaneous" thermal preference and thermoregulatory behaviors induced by thermal and pharmacological stimuli in a thermogradient apparatus. In adult Wistar rats, the DLF was surgically severed at the first cervical vertebra bilaterally. The functional effectiveness of funiculotomy was verified by the increased latency of tail-flick responses to noxious cold (-18°C) and heat (50°C). In the thermogradient apparatus, funiculotomized rats showed a higher variability of their preferred ambient temperature (T pr ) and, consequently, increased T c fluctuations, as compared to sham-operated rats. The cold-avoidance (warmth-seeking) response to moderate cold (whole-body exposure to ~17°C) or epidermal menthol (an agonist of the cold-sensitive TRPM8 channel) was attenuated in funiculotomized rats, as compared to sham-operated rats, and so was the T c (hyperthermic) response to menthol. In contrast, the warmth-avoidance (cold-seeking) and T c responses of funiculotomized rats to mild heat (exposure to ~28°C) or intravenous RN-1747 (an agonist of the warmth-sensitive TRPV4; 100 μg/kg) were unaffected. We conclude that DLF-mediated signals contribute to driving spontaneous thermal preference, and that attenuation of these signals is associated with decreased precision of T c regulation. We further conclude that thermally and pharmacologically induced changes in thermal preference rely on neural, presumably afferent, signals that travel in the spinal cord within the DLF. Signals conveyed by the DLF are important for cold-avoidance behaviors but make little contribution to heat-avoidance responses.