Login / Signup

A combined transcriptomic and proteomic analysis of chrysanthemum provides new insights into petal senescence.

Juanni YaoRui LiYulin ChengZhengguo Li
Published in: Planta (2021)
Numerous transcription factor genes and methylation-related genes were differentially expressed in senescent petals compared with control petals. Studying petal senescence is crucial for extending the postharvest longevity of cut flowers, but petal senescence remains relatively unexplored compared to well-studied leaf senescence. In this study, a combined transcriptomic and proteomic analysis of senescent (22 days after cutting) and control (0 day after cutting) petals was performed to investigate the molecular processes underlying petal senescence of chrysanthemum (Chrysanthemum morifolium Ramat.), an important cut flower crop worldwide. A total of 11,324 differentially expressed genes (DEGs), including 4888 up-regulated and 6436 down-regulated genes, and 403 differentially expressed proteins (DEPs), including 210 up-regulated and 193 down-regulated proteins, were identified at transcript and protein levels, respectively. A cross-comparison of transcriptomic and proteomic data identified 257 consistent DEGs/DEPs, including 122 up-regulated and 135 down-regulated DEGs/DEPs. Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis showed that "cutin, suberine and wax biosynthesis" is a main pathway for both DEGs and DEPs, especially for down-regulated DEGs/DEPs. Functional analysis indicated that chrysanthemum genes mainly encoding putative cytochrome P450s, non-specific lipid-transfer proteins, subtilisin-like proteases, AAA-ATPases, proteins essential for cuticular wax biosynthesis, and proteins in hormone signal transduction or ubiquitination were differentially expressed at both transcript and protein levels. In addition, numerous transcription factor genes and methylation-related genes were also differentially expressed, inferring an involvement of transcriptional and epigenetic regulation in petal senescence. These results provide a valuable resource of studying chrysanthemum senescence and significant insights into petal senescence.
Keyphrases