Facile Preparation of Self-Assembled Polydopamine-Modified Electrospun Fibers for Highly Effective Removal of Organic Dyes.
Cuiru WangJuanjuan YinRan WangTifeng JiaoHaiming HuangJingxin ZhouLexin ZhangQiuming PengPublished in: Nanomaterials (Basel, Switzerland) (2019)
Polydopamine (PDA) nanoparticles can be used as an adsorbent with excellent adsorption capacity. However, nanosized adsorbents are prone to aggregation and thus are severely limited in the field of adsorption. In order to solve this problem, we utilized polydopamine in-situ oxidation self-polymerization on the surface of polycaprolactone (PCL)/polyethylene oxide (PEO) electrospun fiber after solvent vapor annealing (SVA) treatment, and successfully designed and prepared a PCL/PEO@PDA composite membrane. The SVA treatment regulated the microscopic morphology of smooth PCL/PEO electrospun fibers that exhibited a pleated microstructure, increasing the specific surface area, and providing abundant active sites for the anchoring of PDA nanoparticles. The PCL/PEO@PDA composite obtained by chemical modification of PDA demonstrated numerous active sites for the adsorption of methylene (MB) and methyl orange (MO). In addition, the PCL/PEO@PDA composites were reusable several times with good reutilization as adsorbents. Therefore, we have developed a highly efficient and non-agglomerated dye adsorbent that exhibits potential large-scale application in dye removal and wastewater purification.