CD38, CD39, and BCL2 differentiate disseminated forms of high-grade B-cell lymphomas in biological fluids from Burkitt lymphoma and diffuse large B-cell lymphoma.
Pauline MarianiniVanessa Lacheretz-SzablewskiMarion AlmerasJérôme MoreauxCaroline BretPublished in: Cytometry. Part B, Clinical cytometry (2024)
High-grade B-cell lymphomas (HGBCL) represent a heterogeneous group of very rare mature B-cell lymphomas. The 4th revised edition of the WHO Classification of Tumors of Hematopoietic and Lymphoid Tissues (WHO-HAEM) previously defined two categories of HGBCL: the so-called double-hit (DHL) and triple-hit (THL) lymphomas, which were related to forms harboring MYC and BCL2 and/or BCL6 rearrangements, and HGBCL, NOS (not otherwise specified), corresponding to entities with intermediate characteristics between diffuse large B-cell lymphoma (DLBCL) and Burkitt lymphoma (BL), without rearrangement of the MYC and BCL2, and/or BCL6 genes. In the 5th edition of the WHO-HAEM, DHL with MYC and BCL2 rearrangements or THL were reassigned as DLBCL/HGBCL with MYC and BCL2 rearrangements (DLBCL/HGBL-MYC/BCL2), whereas the category HGBCL, NOS remains unchanged. Characterized by an aggressive clinical presentation and a poor prognosis, HGBCL is often diagnosed at an advanced, widespread stage, leading to potential disseminated forms with a leukemic presentation, or spreading to the bone marrow (BM) or other biological fluids. Flow cytometric immunophenotypic study of these disseminated cells can provide a rapid method to identify HGBCL. However, due to the scarcity of cases, only limited data about the immunophenotypic features of HGBCL by multiparametric flow cytometry are available. In addition, identification of HGBCL cells by this technique may be challenging due to clinical, pathological, and biological features that can overlap with other distinct lymphoid malignancies, including Burkitt lymphoma (BL), diffuse large B-cell lymphoma (DLBCL), and even B acute lymphoblastic leukemia (B-ALL). In this study, we aimed to characterize the detailed immunophenotypic portrait of HGBCL, evaluating by multiparametric flow cytometry (MFC) the expression of 26 markers on biological samples obtained from a cohort of 10 newly-diagnosed cases and comparing their level of expression with normal peripheral blood (PB) B lymphocytes (n = 10 samples), tumoral cells from patients diagnosed with B-ALL (n = 30), BL (n = 13), or DLBCL (n = 22). We then proposed a new and simple approach to rapidly distinguish disseminated forms of HGBCL, BL, and DLBCL, using the combination of MFC data for CD38, BCL2, and CD39, the three most discriminative markers explored in this study. We finally confirmed the utility of the scoring system previously proposed by Khanlari to distinguish HGBCL cells from B lymphoblasts of B-ALL. In conclusion, we described a distinct immunophenotypic portrait of HGBCL cells and proposed a strategy to differentiate these cells from other aggressive B lymphoma entities in biological samples.
Keyphrases
- diffuse large b cell lymphoma
- poor prognosis
- epstein barr virus
- flow cytometry
- high grade
- newly diagnosed
- bone marrow
- induced apoptosis
- acute lymphoblastic leukemia
- peripheral blood
- long non coding rna
- transcription factor
- cell cycle arrest
- machine learning
- oxidative stress
- mesenchymal stem cells
- gene expression
- prognostic factors
- heavy metals
- big data
- artificial intelligence
- cell proliferation
- allogeneic hematopoietic stem cell transplantation
- genome wide identification