Login / Signup

Defect-Rich Dopant-Free ZrO2 Nanoclusters and Their Size-Dependent Ferromagnetism.

Xiaoyi GuanSaurabh SrivastavaJoseph Palathinkal ThomasNina F HeinigJung-Soo KangMd Anisur RahmanKam Tong Leung
Published in: ACS applied materials & interfaces (2020)
As an intermediate form of matter between a single atom or molecule and the bulk, nanoclusters (NCs) provide novel properties because of their high surface area-to-volume ratios and distinct physical and electronic structures. These ultrasmall NCs offer a new approach to advance charge-spin manipulation for novel devices, including spintronics and magnetic tunneling junctions. Here, we deposit monosized ZrO2 NCs over a large area by using gas-phase aggregation followed by in situ size selection by a quadrupole mass filter. These size-specific NCs exhibit sub-oxide photoemission features at binding energies that are dependent on the cluster size (from 3 to 9 nm), which are attributed to different oxygen vacancy defect states. These dopant-free ZrO2 NCs also show strongly size-dependent ferromagnetism, which provides distinct advantages in solubility and homogeneity of magnetism when compared to traditional dilute magnetic semiconductors. A defect-band hybridization-induced magnetic polaron model is proposed to explain the origin of this size-dependent ferromagnetism. This work demonstrates a new protocol of magnetization manipulation by size control and promises potential applications based on these defect-rich size-selected NCs.
Keyphrases