Biosynthesis mechanisms of medium-chain carboxylic acids and alcohols in anaerobic microalgae fermentation regulated by pH conditions.
Xingdong ShiWei WeiLan WuYuhan HuangBing-Jie NiPublished in: Applied and environmental microbiology (2023)
Carboxylate platforms encompass a biosynthesis process involving a mixed and undefined culture, enabling the conversion of microalgae, rich in carbohydrates and protein, into valuable fuels and mitigating the risks associated with algae blooms. However, there is little known about the effects of pH on the metabolic pathways of chain elongation and alcohol production in anaerobic microalgae fermentation. Moreover, convoluted and interdependent microbial interactions encumber efforts to characterize how organics and electrons flow among microbiome members. In this work, we compared metabolic differences among three different pH levels (5, 7, and 10) in anaerobic microalgae fermentation. In addition, genome-centric metagenomic analysis was conducted to reveal the microbial interaction for medium-chain carboxylic acid and alcohol production.