Systematic Investigation of the Degradation Properties of Nitrile-Butadiene Rubber/Polyamide Elastomer/Single-Walled Carbon Nanotube Composites in Thermo-Oxidative and Hot Oil Environments.
Guangyong LiuHuiyu WangTianli RenYuwei ChenSusu LiuPublished in: Polymers (2024)
The physical blending method was used in order to prepare nitrile-butadiene rubber/polyamide elastomer/single-walled carbon nanotube (NBR/PAE/SWCNT) composites with better thermal-oxidative aging resistance. The interactions between SWCNTs and NBR/PAE were characterized using the Moving Die Rheometer 2000 (MDR 2000), rheological behavior tests, the equilibrium swelling method, and mechanical property tests. The 100% constant tensile stress and hardness of NBR/PAE/SWCNT composites increased from 2.59 MPa to 4.14 MPa and from 62 Shore A to 69 Shore A, respectively, and the elongation decreased from 421% to 355% with increasing SWCNT content. NBR/PAE/SWCNT composites had improved thermal-oxidative aging resistance due to better interactions between SWCNTs and NBR/PAE. During the aging process, the tensile strength and elongation at break decreased with the increase in aging time compared to the unaged samples, and the constant tensile stress gradually increased. There was a more significant difference in the degradation of mechanical properties when aged in a variety of oils. The 100% constant tensile stress of NBR/PAE/SWCNT composites aged in IRM 903 gradually increased with aging time while it gradually decreased in biodiesel. The swelling index gradually increased with increasing SWCNT content. Interestingly, the swelling index of the composites in cyclohexanone decreased with the increase in SWCNT content. The reasons leading to different swelling behaviors when immersed in different kinds of liquids were investigated using the Hansen solubility parameter (HSP) method, which provides an excellent guide for the application of some oil-resistant products.