A Functional Schizophrenia-associated genetic variant near the TSNARE1 and ADGRB1 genes.
Marah H WahbehRachel J BoydChristian YovoBailey RikeAndrew S McCallionDimitrios AvramopoulosPublished in: bioRxiv : the preprint server for biology (2023)
Recent collaborative genome wide association studies (GWAS) have identified >200 independent loci contributing to risk for schizophrenia (SCZ). The genes closest to these loci have diverse functions, supporting the potential involvement of multiple relevant biological processes; yet there is no direct evidence that individual variants are functional or directly linked to specific genes. Nevertheless, overlap with certain epigenetic marks suggest that most GWAS-implicated variants are regulatory. Based on the strength of association with SCZ and the presence of regulatory epigenetic marks, we chose one such variant near TSNARE1 and ADGRB1 , rs4129585, to test for functional potential and assay differences that may drive the pathogenicity of the risk allele. We observed that the variant-containing sequence drives reporter expression in relevant neuronal populations in zebrafish. Next, we introduced each allele into human induced pluripotent cells and differentiated 4 isogenic clones homozygous for the risk allele and 5 clones homozygous for the non-risk allele into neural precursor cells. Employing RNA-seq, we found that the two alleles yield significant transcriptional differences in the expression of 109 genes at FDR <0.05 and 259 genes at FDR <0.1. We demonstrate that these genes are highly interconnected in pathways enriched for synaptic proteins, axon guidance, and regulation of synapse assembly. Exploration of genes near rs4129585 suggests that this variant does not regulate TSNARE1 transcripts, as previously thought, but may regulate the neighboring ADGRB1 , a regulator of synaptogenesis. Our results suggest that rs4129585 is a functional common variant that functions in specific pathways likely involved in SCZ risk.
Keyphrases
- genome wide
- rna seq
- bioinformatics analysis
- genome wide identification
- transcription factor
- gene expression
- induced apoptosis
- copy number
- poor prognosis
- genome wide association
- single cell
- endothelial cells
- cell cycle arrest
- cystic fibrosis
- signaling pathway
- genome wide analysis
- climate change
- high throughput
- endoplasmic reticulum stress
- risk assessment
- induced pluripotent stem cells
- cell death