Login / Signup

Covalent Organic Frameworks and Their Derivatives for Better Metal Anodes in Rechargeable Batteries.

Chuanliang WeiLiwen TanYuchan ZhangKai ZhangBaojuan XiShenglin L XiongJinkui FengYitai Qian
Published in: ACS nano (2021)
Metal anodes based on a plating/stripping electrochemistry such as metallic Li, Na, K, Zn, Ca, Mg, Fe, and Al are recognized as promising anode materials for constructing next-generation high-energy-density rechargeable metal batteries owing to their low electrochemical potential, high theoretical specific capacity, superior electronic conductivity, etc. However, inherent issues such as high chemical reactivity, severe growth of dendrites, huge volume changes, and unstable interface largely impede their practical application. Covalent organic frameworks (COFs) and their derivatives as emerging multifunctional materials have already well addressed the inherent issues of metal anodes in the past several years due to their abundant metallophilic functional groups, special inner channels, and controllable structures. COFs and their derivatives can solve the issues of metal anodes by interfacial modification, homogenizing ion flux, acting as nucleation seeds, reducing the corrosion of metal anodes, and so on. Nevertheless, related reviews are still absent. Here we present a detailed review of multifunctional COFs and their derivatives in metal anodes for rechargeable metal batteries. Meanwhile, some outlooks and opinions are put forward. We believe the review can catch the eyes of relevant researchers and supply some inspiration for future research.
Keyphrases
  • ion batteries
  • drug delivery
  • randomized controlled trial
  • systematic review
  • gold nanoparticles
  • risk assessment
  • optical coherence tomography
  • solid state
  • molecularly imprinted