Enhanced Biocompatibility and Differentiation Capacity of Mesenchymal Stem Cells on Poly(dimethylsiloxane) by Topographically Patterned Dopamine.
Huey-Shan HungAlex Yang-Hao YuShu-Chen HsiehMei-Lang KungHsiu-Yuan HuangRu-Huei FuChun-An YehShan-Hui HsuPublished in: ACS applied materials & interfaces (2020)
Controlling the behavior of mesenchymal stem cells (MSCs) through topographic patterns is an effective approach for stem cell studies. We, herein, reported a facile method to create a dopamine (DA) pattern on poly(dimethylsiloxane) (PDMS). The topography of micropatterned DA was produced on PDMS after plasma treatment. The grid-topographic-patterned surface of PDMS-DA (PDMS-DA-P) was measured for adhesion force and Young's modulus by atomic force microscopy. The surface of PDMS-DA-P demonstrated less stiff and more elastic characteristics compared to either nonpatterned PDMS-DA or PDMS. The PDMS-DA-P evidently enhanced the differentiation of MSCs into various tissue cells, including nerve, vessel, bone, and fat. We further designed comprehensive experiments to investigate adhesion, proliferation, and differentiation of MSCs in response to PDMS-DA-P and showed that the DA-patterned surface had good biocompatibility and did not activate macrophages or platelets in vitro and had low foreign body reaction in vivo. Besides, it protected MSCs from apoptosis as well as excessive reactive oxygen species (ROS) generation. Particularly, the patterned surface enhanced the differentiation capacity of MSCs toward neural and endothelial cells. The stromal cell-derived factor-1α/CXantiCR4 pathway may be involved in mediating the self-recruitment and promoting the differentiation of MSCs. These findings support the potential application of PDMS-DA-P in either cell treatment or tissue repair.
Keyphrases
- mesenchymal stem cells
- umbilical cord
- bone marrow
- stem cells
- reactive oxygen species
- endothelial cells
- cell therapy
- cell cycle arrest
- cell death
- oxidative stress
- cystic fibrosis
- uric acid
- risk assessment
- pseudomonas aeruginosa
- body mass index
- gold nanoparticles
- induced apoptosis
- high resolution
- endoplasmic reticulum stress
- fatty acid
- smoking cessation
- cell adhesion