Login / Signup

Antiphotoaging Effects of 3,5-Dicaffeoyl-epi-quinic Acid via Inhibition of Matrix Metalloproteinases in UVB-Irradiated Human Keratinocytes.

Jung Hwan OhJung Im LeeFatih KaradenizSo Young ParkYoungwan SeoChang-Suk Kong
Published in: Evidence-based complementary and alternative medicine : eCAM (2020)
UVB exposure is one of the causes of several skin complications including but not limited to premature aging, wrinkle formation, and hyperpigmentation. UV-induced skin aging is called photoaging, and oxidative stress-induced overexpression of matrix metalloproteinases (MMPs) is the main reason behind the photoaging-mediated collagen degradation. Natural origin inhibitors of MMPs are regarded as a promising approach to prevent or treat photoaging. Therefore, the present study investigated the protective effects of 3,5-dicaffeoyl-epi-quinic acid (DCEQA) in human HaCaT keratinocytes against UVB irradiation-related dysregulation of MMPs. Changes in the mRNA and protein expression and release of MMP-1, -2, and -9 were observed after UVB irradiation with or without DCEQA treatment. In addition, the effect of DCEQA on the activation of p38, JNK, and ERK MAPKs was analyzed. Treatment of UVB-irradiated HaCaT cells with 10 μM DCEQA significantly suppressed the overexpression of both mRNA and protein of MMP-1, -2, and -9 while slightly increasing the diminished type I procollagen production. UVB-induced activation of MAPKs was also ameliorated by DCEQA treatment in a dose-dependent manner. Results indicated that DCEQA treatment was able to protect keratinocytes from UVB-induced photoaging by inhibiting the stimulated production of MMPs and the related decrease in collagen production. It was suggested that DCEQA downregulated the collagen degradation via inhibition of MAPK activation, which resulted in decreased MMP activity.
Keyphrases
  • signaling pathway
  • wound healing
  • cell proliferation
  • high glucose
  • diabetic rats
  • small molecule
  • soft tissue
  • pluripotent stem cells