Prediction of the Malignancy of a Breast Lesion Detected on Breast Ultrasound: Radiomics Applied to Clinical Practice.
Luca NicosiaFilippo PesapaneAnna Carla BozziniAntuono LatronicoAnna RotiliFederica FerrariGiulia SignorelliSara RaimondiSilvano VignatiAurora GaetaFederica BellerbaDaniela OriggiPaolo De MarcoGiuseppe Castiglione MinischettiClaudia SangalliMarta MontesanoSimone PalmaClaudia SangalliPublished in: Cancers (2023)
The study aimed to evaluate the performance of radiomics features and one ultrasound CAD (computer-aided diagnosis) in the prediction of the malignancy of a breast lesion detected with ultrasound and to develop a nomogram incorporating radiomic score and available information on CAD performance, conventional Breast Imaging Reporting and Data System evaluation (BI-RADS), and clinical information. Data on 365 breast lesions referred for breast US with subsequent histologic analysis between January 2020 and March 2022 were retrospectively collected. Patients were randomly divided into a training group ( n = 255) and a validation test group ( n = 110). A radiomics score was generated from the US image. The CAD was performed in a subgroup of 209 cases. The radiomics score included seven radiomics features selected with the LASSO logistic regression model. The multivariable logistic model incorporating CAD performance, BI-RADS evaluation, clinical information, and radiomic score as covariates showed promising results in the prediction of the malignancy of breast lesions: Area under the receiver operating characteristic curve, [AUC]: 0.914; 95% Confidence Interval, [CI]: 0.876-0.951. A nomogram was developed based on these results for possible future applications in clinical practice.